Model Gallery

Discover and install AI models from our curated collection

12 models available
1 repositories
Documentation

Find Your Perfect Model

Filter by Model Type

Browse by Tags

qwen3-vl-30b-a3b-instruct
Meet Qwen3-VL — the most powerful vision-language model in the Qwen series to date. This generation delivers comprehensive upgrades across the board: superior text understanding & generation, deeper visual perception & reasoning, extended context length, enhanced spatial and video dynamics comprehension, and stronger agent interaction capabilities. Available in Dense and MoE architectures that scale from edge to cloud, with Instruct and reasoning‑enhanced Thinking editions for flexible, on-demand deployment. #### Key Enhancements: * **Visual Agent**: Operates PC/mobile GUIs—recognizes elements, understands functions, invokes tools, completes tasks. * **Visual Coding Boost**: Generates Draw.io/HTML/CSS/JS from images/videos. * **Advanced Spatial Perception**: Judges object positions, viewpoints, and occlusions; provides stronger 2D grounding and enables 3D grounding for spatial reasoning and embodied AI. * **Long Context & Video Understanding**: Native 256K context, expandable to 1M; handles books and hours-long video with full recall and second-level indexing. * **Enhanced Multimodal Reasoning**: Excels in STEM/Math—causal analysis and logical, evidence-based answers. * **Upgraded Visual Recognition**: Broader, higher-quality pretraining is able to “recognize everything”—celebrities, anime, products, landmarks, flora/fauna, etc. * **Expanded OCR**: Supports 32 languages (up from 19); robust in low light, blur, and tilt; better with rare/ancient characters and jargon; improved long-document structure parsing. * **Text Understanding on par with pure LLMs**: Seamless text–vision fusion for lossless, unified comprehension. #### Model Architecture Updates: 1. **Interleaved-MRoPE**: Full‑frequency allocation over time, width, and height via robust positional embeddings, enhancing long‑horizon video reasoning. 2. **DeepStack**: Fuses multi‑level ViT features to capture fine-grained details and sharpen image–text alignment. 3. **Text–Timestamp Alignment:** Moves beyond T‑RoPE to precise, timestamp‑grounded event localization for stronger video temporal modeling. This is the weight repository for Qwen3-VL-30B-A3B-Instruct.

Repository: localaiLicense: apache-2.0

qwen3-embedding-4b
The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining. **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of June 5, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios. **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios. **Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities. **Qwen3-Embedding-4B-GGUF** has the following features: - Model Type: Text Embedding - Supported Languages: 100+ Languages - Number of Paramaters: 4B - Context Length: 32k - Embedding Dimension: Up to 2560, supports user-defined output dimensions ranging from 32 to 2560 - Quantization: q4_K_M, q5_0, q5_K_M, q6_K, q8_0, f16

Repository: localaiLicense: apache-2.0

qwen3-embedding-8b
The Qwen3 Embedding series model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining. **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of June 5, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios. **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios. **Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities. **Qwen3-Embedding-8B-GGUF** has the following features: - Model Type: Text Embedding - Supported Languages: 100+ Languages - Number of Paramaters: 8B - Context Length: 32k - Embedding Dimension: Up to 4096, supports user-defined output dimensions ranging from 32 to 4096 - Quantization: q4_K_M, q5_0, q5_K_M, q6_K, q8_0, f16

Repository: localaiLicense: apache-2.0

qwen3-embedding-0.6b
The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining. **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of June 5, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios. **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios. **Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities. **Qwen3-Embedding-0.6B-GGUF** has the following features: - Model Type: Text Embedding - Supported Languages: 100+ Languages - Number of Paramaters: 0.6B - Context Length: 32k - Embedding Dimension: Up to 1024, supports user-defined output dimensions ranging from 32 to 1024 - Quantization: q8_0, f16

Repository: localaiLicense: apache-2.0

google-gemma-3-27b-it-qat-q4_0-small
This is a requantized version of https://huggingface.co/google/gemma-3-27b-it-qat-q4_0-gguf. The official QAT weights released by google use fp16 (instead of Q6_K) for the embeddings table, which makes this model take a significant extra amount of memory (and storage) compared to what Q4_0 quants are supposed to take. Requantizing with llama.cpp achieves a very similar result. Note that this model ends up smaller than the Q4_0 from Bartowski. This is because llama.cpp sets some tensors to Q4_1 when quantizing models to Q4_0 with imatrix, but this is a static quant. The perplexity score for this one is even lower with this model compared to the original model by Google, but the results are within margin of error, so it's probably just luck. I also fixed the control token metadata, which was slightly degrading the performance of the model in instruct mode.

Repository: localaiLicense: gemma

granite-embedding-107m-multilingual
Granite-Embedding-107M-Multilingual is a 107M parameter dense biencoder embedding model from the Granite Embeddings suite that can be used to generate high quality text embeddings. This model produces embedding vectors of size 384 and is trained using a combination of open source relevance-pair datasets with permissive, enterprise-friendly license, and IBM collected and generated datasets. This model is developed using contrastive finetuning, knowledge distillation and model merging for improved performance.

Repository: localai

granite-embedding-125m-english
Granite-Embedding-125m-English is a 125M parameter dense biencoder embedding model from the Granite Embeddings suite that can be used to generate high quality text embeddings. This model produces embedding vectors of size 768. Compared to most other open-source models, this model was only trained using open-source relevance-pair datasets with permissive, enterprise-friendly license, plus IBM collected and generated datasets. While maintaining competitive scores on academic benchmarks such as BEIR, this model also performs well on many enterprise use cases. This model is developed using retrieval oriented pretraining, contrastive finetuning and knowledge distillation.

Repository: localai

ultravox-v0_5-llama-3_1-8b
Ultravox is a multimodal Speech LLM built around a pretrained Llama3.1-8B-Instruct and whisper-large-v3-turbo backbone. See https://ultravox.ai for the GitHub repo and more information. Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message). The input to the model is given as a text prompt with a special <|audio|> pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio. Using the merged embeddings as input, the model will then generate output text as usual. In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output. No preference tuning has been applied to this revision of the model.

Repository: localaiLicense: llama3.1

all-MiniLM-L6-v2
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various tasks. Text is embedded in vector space such that similar text are closer and can efficiently be found using cosine similarity.

Repository: localai

bert-embeddings
llama3.2 embeddings model. Using as drop-in replacement for bert-embeddings

Repository: localaiLicense: llama3.2

nomic-embed-text-v1.5
Resizable Production Embeddings with Matryoshka Representation Learning

Repository: localai

ibm-granite.granite-4.0-1b
### **Granite-4.0-1B** *By IBM | Apache 2.0 License* **Overview:** Granite-4.0-1B is a lightweight, instruction-tuned language model designed for efficient on-device and research use. Built on a decoder-only dense transformer architecture, it delivers strong performance in instruction following, code generation, tool calling, and multilingual tasks—making it ideal for applications requiring low latency and minimal resource usage. **Key Features:** - **Size:** 1.6 billion parameters (1B Dense), optimized for efficiency. - **Capabilities:** - Text generation, summarization, question answering - Code completion and function calling (e.g., API integration) - Multilingual support (English, Spanish, French, German, Japanese, Chinese, Arabic, Korean, Portuguese, Italian, Dutch, Czech) - Robust safety and alignment via instruction tuning and reinforcement learning - **Architecture:** Uses GQA (Grouped Query Attention), SwiGLU activation, RMSNorm, shared input/output embeddings, and RoPE position embeddings. - **Context Length:** Up to 128K tokens — suitable for long-form content and complex reasoning. - **Training:** Finetuned from *Granite-4.0-1B-Base* using open-source datasets, synthetic data, and human-curated instruction pairs. **Performance Highlights (1B Dense):** - **MMLU (5-shot):** 59.39 - **HumanEval (pass@1):** 74 - **IFEval (Alignment):** 80.82 - **GSM8K (8-shot):** 76.35 - **SALAD-Bench (Safety):** 93.44 **Use Cases:** - On-device AI applications - Research and prototyping - Fine-tuning for domain-specific tasks - Low-resource environments with high performance expectations **Resources:** - [Hugging Face Model](https://huggingface.co/ibm-granite/granite-4.0-1b) - [Granite Docs](https://www.ibm.com/granite/docs/) - [GitHub Repository](https://github.com/ibm-granite/granite-4.0-nano-language-models) > *“Make knowledge free for everyone.” – IBM Granite Team*

Repository: localaiLicense: apache-2.0